Documentation


Viewing posts for the category Omarine User's Manual

Neural network: Using genetic algorithms to train and deploy neural networks: batch and mini-batch

Data, example, sample and pattern
Training data of neural network includes examples. These examples can be called samples because the neural network learns them. However, examples in the form of raw data and not called patterns - concepts that contain knowledge. Examples of pattern concepts are regular expression patterns, wool patterns, metallic patterns.

Data Mining
The concept of mining here is exactly the same as its literal meaning of [mineral] mining, patterns and knowledge are extracted from raw data including a large number of examples. It differs from data analysis in general only describing data. Because data mining is related to knowledge, it shares knowledge with machine learning.

batch and mini-batch
The batch method is the method of putting all samples for each step to train the network. This method has the advantage of simplicity and high accuracy. However, this method contains the potential to lead the entire set of examples to local minima. In addition, it is only suitable for small example sets (a few dozen examples) because for a large example set the network must learn all the examples at the same time, it will take a lot of time.
 Large example sets need data mining for training. A small group of examples with size batch_size is extracted to train the neural network at a training step. This method is called mini-batch. The group must contain knowledge to model the sample set. In other words, it must have the role of a pattern. In particular, it must ensure a statistical balance for each class in the neural network.
Interestingly, the statistical nature of the pattern is important, not its size. For example, 1m fabric pattern and 10m fabric pattern are similar. Therefore we use a small batch_size which will greatly reduce computational complexity.

More specifically, the training pattern of neural network is not a physical pattern. This means that a specific example group used as a pattern in a training step does not necessarily have to be statistically balanced and does not need to be present all classes. But the pattern is changed smartly and over thousands of steps it meets the requirements.

The video below shows a neural network with 3000 examples completing training in a few minutes with a test accuracy of over 99% . The batch_size is 32. If it has to learn 3000 examples at the same time as the batch method, the learning of the network will last all day

Can Fuzzy learn or just deduce?

When it comes to Machine Learning, people often think of Neural Network. Indeed, the power of the Neural Network is very strong. However, the application of Neural Network is limited to some fields that require a large number of samples.

Fuzzy can be applied to any problem that an expert offers a set of rules. Fuzzy not only deduced but also learned. It forms new rules that are not included in the rules set by the programmer. To illustrate this, let's look at the entire set of rules in the Sail solution:

Is it possible to do defuzzication a discrete fuzzy set?

Is it possible to directly do defuzzication a discrete fuzzy set with the requirement that the defuzzification result must be one of the discrete values ​​in the fuzzy set?

The answer is NO.

For a continuous fuzzy set, we know the defuzzification formula according to the centroid method as follows:

Binary Qt Creator package version 4.9.82

Qt Creator is a leading integrated development environment (IDE) on the desktop. However, the binary package that Qt company provides to the community is not entirely compatible with the systems. For example, Qt is currently providing binary Qt Creator version 4.9.0. This version is built with Qt version 5.12.2. Therefore, for systems using newer Qt (Qt 5.12.3 - the latest version), a conflict will occur. To fix this, you need to put the system Qt in a separate directory like /opt and make a symlink to it. You can choose the solutions below:

1) Install multiple versions of Qt including Qt 5.12.2 and switch the symlink to it.

Using audit to find out unauthorized access